18 research outputs found

    Fortgeschrittene Entrauschungs-Verfahren und speicherlose Beschleunigungstechniken fĂĽr realistische Bildsynthese

    Get PDF
    Stochastic ray tracing methods have become the industry's standard for today's realistic image synthesis thanks to their ability to achieve a supreme degree of realism by physically simulating various natural phenomena of light and cameras (e.g. global illumination, depth-of-field, or motion blur). Unfortunately, high computational cost for more complex scenes and image noise from insufficient simulations are major issues of these methods and, hence, acceleration and denoising are key components in stochastic ray tracing systems. In this thesis, we introduce two new filtering methods for advanced lighting and camera effects, as well as a novel approach for memoryless acceleration. In particular, we present an interactive filter for global illumination in the presence of depth-of-field, and a general and robust adaptive reconstruction framework for high-quality images with a wide range of rendering effects. To address complex scene geometry, we propose a novel concept which models the acceleration structure completely implicit, i.e. without any additional memory cost at all, while still allowing for interactive performance. Our contributions advance the state-of-the-art of denoising techniques for realistic image synthesis as well as the field of memoryless acceleration for ray tracing systems.Stochastische Ray-Tracing Methoden sind heutzutage der Industriestandard für realistische Bildsynthese, da sie einen hohen Grad an Realismus erzeugen können, indem sie verschiedene natürliche Phänomene (z.B. globale Beleuchtung, Tiefenunschärfe oder Bewegungsunschärfe) physikalisch korrekt simulieren. Offene Probleme dieser Verfahren sind hohe Rechenzeit für komplexere Szenen sowie Bildrauschen durch unzulängliche Simulationen. Demzufolge sind Beschleunigungstechniken und Entrauschungsverfahren essentielle Komponenten in stochastischen Ray-Tracing-Systemen. In dieser Arbeit stellen wir zwei neue Filter-Methoden für erweiterte Beleuchungs- und Kamera-Effekte sowie ein neuartiges Verfahren für eine speicherlose Beschleunigungsstruktur vor. Im Detail präsentieren wir einen interaktiven Filter für globale Beleuchtung in Kombination mit Tiefenunschärfe und einen generischen, robusten Ansatz für die adaptive Rekonstruktion von hoch-qualitativen Bildern mit einer großen Auswahl an Rendering-Effekten. Für das Problem hoher geometrischer Szenen-Komplexität demonstrieren wir ein neuartiges Konzept für die implizierte Modellierung der Beschleunigungsstruktur, welches keinen zusätzlichen Speicher verbraucht, aber weiterhin interaktive Laufzeiten ermöglicht. Unsere Beiträge verbessern sowohl den aktuellen Stand von Entrauschungs-Verfahren in der realistischen Bildsynthese als auch das Feld der speicherlosen Beschleunigungsstrukturen für Ray-Tracing-Systeme

    Jellyfish: Timely Inference Serving for Dynamic Edge Networks

    Get PDF

    Implicit Object Space Partitioning: The No-Memory BVH

    Get PDF
    We present a new ray tracing algorithm that requires no explicit acceleration data structure and therefore no memory. It is represented in a completely implicit way by triangle reordering. This new implicit data structure is simple to build, efficient to traverse and has a fast total time to image. The implicit acceleration data structure must be constructed only once and can be reused for arbitrary numbers of rays or ray batches without the need to rebuild the hierarchy. Due to the fast build times it is very well suitable for dynamic and animated scenes. We compare it to classic acceleration data structures, like a Bounding Volume Hierarchy, and analyze its effciency

    Jellyfish: Timely Inference Serving for Dynamic Edge Networks

    Get PDF
    While high accuracy is of paramount importance for deep learning (DL) inference, serving inference requests on time is equally critical but has not been carefully studied especially when the request has to be served over a dynamic wireless network at the edge. In this paper, we propose Jellyfish—a novel edge DL inference serving system that achieves soft guarantees on end-to-end inference latency often specified as a service-level objective (SLO). To handle the network variability, Jellyfish exploits both data and deep neural network (DNN) adaptation to conduct tradeoffs between accuracy and latency. Jellyfish features a new design that enables collective adaptation policies where the decisions for data and DNN adaptations are aligned and coordinated among multiple users with varying network conditions. We propose efficient algorithms to dynamically adapt DNNs and map users, so that we fulfill latency SLOs while maximizing the overall inference accuracy. Our experiments based on a prototype implementation and real-world WiFi and LTE network traces show that Jellyfish can meet latency SLOs at around the 99th percentile while maintaining high accuracy

    Primary Sample Space Path Guiding

    No full text
    Guiding path tracing in light transport simulation has been one of the practical choices for variance reduction in production rendering. For this purpose, typically structures in the spatial-directional domain are built. We present a novel scheme for unbiased path guiding. Different from existing methods, we work in primary sample space. We collect records of primary samples as well as the luminance that the resulting path contributes and build a multiple dimensional structure, from which we derive random numbers that are fed into the path tracer. This scheme is executed completely outside the rendering kernel. We demonstrate that this method is practical and efficient. We manage to reduce variance and zero radiance paths by only working in the primary sample space

    Hash-based Hierarchical Caching for Interactive Previews in Global Illumination Rendering

    No full text
    Modern Monte-Carlo-based rendering systems still suffer from the computational complexity involved in the generation of noise-free images, making it challenging to synthesize interactive previews. We present a framework suited for rendering such previews ofstatic scenes using a caching technique that builds upon a linkless octree. Our approach allows for memory-efficient storage and constant-time lookup to cache diffuse illumination at multiple hitpoints along the traced paths. Non-diffuse surfaces are dealt with in a hybrid way in order to reconstruct view-dependent illumination while maintaining interactive frame rates. By evaluating the visual fidelity against ground truth sequences and by benchmarking, we show that our approach compares well to low-noise path traced results, but with a greatly reduced computational complexity allowing for interactive frame rates. This way, our caching technique provides a useful tool for global illumination previews and multi-view rendering

    Primary Sample Space Path Guiding

    No full text
    Guiding path tracing in light transport simulation has been one of the practical choices for variance reduction in production rendering. For this purpose, typically structures in the spatial-directional domain are built. We present a novel scheme for unbiased path guiding. Different from existing methods, we work in primary sample space. We collect records of primary samples as well as the luminance that the resulting path contributes and build a multiple dimensional structure, from which we derive random numbers that are fed into the path tracer. This scheme is executed completely outside the rendering kernel. We demonstrate that this method is practical and efficient. We manage to reduce variance and zero radiance paths by only working in the primary sample space
    corecore